Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 19, 2026
-
null (Ed.)We present and analyze a momentum-based gradient method for training linear classifiers with an exponentially-tailed loss (eg, the exponential or logistic loss), which maximizes the classification margin on separable data at a rate of O (1/t^ 2). This contrasts with a rate of O (1/log (t)) for standard gradient descent, and O (1/t) for normalized gradient descent. The momentum-based method is derived via the convex dual of the maximum-margin problem, and specifically by applying Nesterov acceleration to this dual, which manages to result in a simple and intuitive method in the primal. This dual view can also be used to derive a stochastic variant, which performs adaptive non-uniform sampling via the dual variables.more » « less
An official website of the United States government

Full Text Available